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I N T R O D U C T I O N  

The early work of Richardson & Zaki (1954) indicated that the relation between particle 
concentration and the settling velocity of suspended spherical particles can be approximated with 
good accuracy by a relation of the form 

Vp = v0(1 - :~),- I. [1] 

Here vp is the mean particle velocity relative to the fluid, v0 is the single-particle terminal velocity 
and 7 is the volume fraction of particles. The results of Richardson & Zaki (1954) suggest that 
the exponent n is primarily a function of the terminal Reynolds number for a single particle, 
Re = prvodp/pf. However, they also found tha-t-n was a weak function of the ratio of particle-to- 
channel diameter, dp/D, when this ratio is significantly greater than zero (> 10-2). They presented 
correlations for n as a function of Re and dv/D which are best-fits to their experimental data. 

For the limiting situation where dv/D--*0, Richardson & Zaki (1954) and Wen & Yu (1966) 
analytically predicted the variation of n with Re by considering the force balance on the particles 
in specific flow regimes. The variation of n with Re was similarly predicted by Wallis (1969) who 
combined the results of a force-balance analysis with experimental information. 

As noted by Wallis (1969), [1], together with an appropriate correlation for n, can be used very 
effectively in the 1-D analysis of fluidized beds and certain other two-phase flow circumstances. 
The usefulness of these relations in analyses of this type has provided the incentive to develop 
correlations for n which are as accurate as possible. 

The object of the present communication is to point out an alternative means of predicting the 
dependence of n on Re which is independent of direct measurements in fluidized systems. This 
approach takes advantage of the fact that as the concentration of particles approaches the value 
for incipient fluidization, the value of n must be such that the system flow and pressure-drop 
behavior approaches that of a rigid bed of packed spheres. 

DISCUSSION 

The friction pressure drop associated with a packed bed of spheres is assumed here to be given 
by the relation of Ergun (1952), which includes viscous and inertia effects: 

dp )  ~2 I.tfu, . ~ pfu~ 
- ~ r = 150(1 _ ~)-----------~ -~-~+ 1.75 (1 - ~)---------~ --~--p" [2] 

Here, us is the superficial fluid velocity and dp is the particle diameter. At incipient fluidization, the 
friction pressure drop in the bed must just balance the weight of the particles, i.e. 

- (~Z )r= Ot(Pp - pOg, [3] 
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where pp and Pr are the particle and fluid densities. It can easily be shown that 
"~ ,2  
aPt'C o CD 

g(Pp - pod;  - 4 [41 

where Ct) is the drag coefficient for a single particle at its terminal velocity. Noting that the actual 
fluid velocity through the packed bed, vr, is given by 

/2 s 
Vr - (1 -- :~ '  [5] 

[1]-[5] can be combined to obtain 

v 0 ( 1 - e ) 2 R e C o ( > / l +  4 f 2 - 1 )  
vr = %_b-O-~ 2f2 ' [6] 

where 
- -  : ~ ) 3  

= 5.83 x 10 -5 (1 z2 Re-" CD. [7] 

For a fluidized system, v r must equal vp, and hence at incipient fluidization, [1] and [6] must be 
equal. Data presented in Wallis (1969) and other previous studies suggest that incipient fluidization 
for beds of spherical particles corresponds approximately to ~ = 0.6. Assuming that e = 0.6 and 
setting [1] equal to [6] yields the following relation for n: 

n=l'09{7"54--1nI#l+4"15x2.07x10-SReZCD--ll}10 -SRe . [8] 

Using the well-known Schiller & Nauman (1933) relation for the drag coefficient for Re < 1000 
and CD = 0.44 for Re I> 1000: 

and 

24(1 + 0.15 Re °687) 
CD Re for Re < 1000 [9a] 

CD=0.44 for Re~> 1000; [9b] 

[8] is a complete prediction of n as a function of Re. The resulting variation is plotted in figure 
t. It is interesting to note that with [9a,b], [8] predicts that as Re ---, 0, n ---, 4.74, and as Re --, co, 
n --, 2.41. The analysis of Wen & Yu (1966) indicates values of n = 4.65 and n = 2.35, respectively, 
for these limits. The experimentally determined values of n from the data of Richardson & Zaki 
(1954) are also shown in figure t. The prediction of [8] is seen to agree reasonably well with the 
data. 
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Figure I. Compar ison  of predicted variations of n with that determined from the measured data of  
Richardson & Zaki (1954). 
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As noted above, [8] is derived assuming that [1] and [6] must be equal at = = 0.6. It is easily shown 
that although changing the choice of :~ alters the coefficients in [8], the predicted variation of n with 
Re is not very sensitive to the choice of e. Changing :~ by +0.05 produces a < 3% change in the 
predicted n value at low Re and a < 5% change in n at high Re. 

It is also worth noting that if the second term on the r.h.s, of [2] is neglected, which neglects 
inertia effects, [8] becomes 

n = 1.09 [7.54-  In (CoRe)]. [10] 

If [10] is used with [9a,b] to predict n, the resulting variation deviates from that for [8] only at high 
Re, as shown by the dotted curve in figure 1. This implies that the leveling-off of n to a constant 
value as Re---, co is due to the combined effects of constant Co and the increasing importance of 
inertia effects on the drag characteristics of the system. 

Also shown in figure 1 is the curve predicted by the relation suggested by WaUis (1969): 

n 4 7 ( 1 + 0.15 R e  0'687 "~ 
= . \ f  ~ ~-~-3 ~eO.684j. [11] 

This relation agrees better with the data than [8]. However, this equation was derived using 
theoretical arguments together with information on the trends in the results of Richardson & Zaki 
(1954). In this sense, it is somewhat fitted to these results. 

It is interesting to note, however, that although the curve representing [11] fits the data well, it 
exhibits a complex behavior at high Re, dropping slightly near Re = 1000 before rising and 
leveling-off at a limiting value of n = 2.79 as Re---, co. In contrast, [8], derived in the present 
analysis, suggests that n monotonically decreases toward a limiting value of n = 2.41 as Re ~ co, 
which is more consistent with the observed trend in the data shown in figure 1. In addition, the 
limiting value of n as Re---, co for [11] is somewhat higher than that suggested by the results of 
Richardson & Zaki (1954) and Wen & Yu ~1966). 

It has been shown here that by combining relations for the known behaviors of fluidized and 
packed beds of spheres at the condition of incipient fluidization, a new relation for n(Re) is 
obtained which agrees well with experimental data over a wide range of Reynolds number. In 
addition, the analysis presented here provides insight into the role of inertia effects on the variation 
of n, and demonstrates the necessary link between characteristics of fluidized and packed beds near 
the condition of incipient fluidization. 
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